Что такое рн и ес? просто о сложном полезно

 

Что такое рН и ЕС? Просто о сложном

 

Часто дотошные огородники, желая разобраться, какая почва, вода или удобрение действительно необходимы растениям, сталкиваются со "страшными" терминами вроде "водородный показатель", "удельная электропроводность" или "концентрация ионов".

Сталкиваются и в большинстве своем, не имея профильного химического или физического образования, уже на первом абзаце отказываются продираться сквозь зубодробительные научные описания и продолжают действовать на огороде по старике, на авось.

А ведь информация-то по-настоящему важная! Поэтому попробуем вам рассказать обо всех этих премудростях просто и понятно. А вы берите себе на заметку.

Тот самый "водородный показатель" – это и есть рН, potentia hydrogeni (сила водорода). И показывает он действительно меру активности положительных ионов водорода H+ в растворе по сравнению с отрицательными ионами ОН- (формула воды Н2О, если вы еще не забыли школьный курс химии).

Но не торопитесь пугаться и удивляться, зачем вам вообще это знать. Проще говоря – величина рН выражает кислотность субстрата. Чем активнее ионы H+, тем он кислее.

Говоря другими словами, чем значение pH меньше (среднестатистическая шкала принята от 0 до 14), тем он кислее в прямом и переносном смысле. У кислотных растворов pH 7, pH нейтральных растворов равен 7. Одна единица на такой шкале больше другой примерно в 10 раз (шкала логарифмическая).

При растворении в воде различных веществ этот баланс может быть нарушен, что и приводит к изменению уровня рН.

Например, идеально чистая вода будет иметь рН в районе 7 – это среднее в шкале, а значит, нейтральное значение. Морская же вода будет значительно менее, а дождевая – более кислотной, чем эталонный дистиллят. Наш желудочный сок кислый – его рН приблизительно равно 1-2. Где-то в этом же диапазоне находятся уксус, кислые соки и даже электролиты в аккумуляторах. А, например, известный всем отбеливатель "хлорка" уже сильно щелочной – его показатель рН составляет около 12.

Насколько это важно для огородника? Дело в том, что разные системы живых организмов для нормального функционирования и возможности протекания или правильного результата той или иной реакции нуждаются в разных показателях рН – для человеческого организма этот показатель "свой" у крови, желудочного сока, поверхности кожи и т.п.

Растения – тоже живые организмы. Если при поливе, посадке, удобрении растений баланс рН изменяется, меняется и нормальное течение всех процессов внутри этого организма (растения). Стабильный pH – чуть ли не основной фактор в их выращивании, позволяющий комфортно существовать всем системам, а главное – полноценно усваивать питательные элементы из окружающей среды.

Диапазон pH 5,5-6,5 считается для выращивания растений идеальным – это важно, например, при культивации растений методом гидропоники. При более высоких значениях, к примеру, практически не будут усваиваться марганец (Mn), бор (B) и фосфор (P), а при более низких огородные культуры недополучат магний (Mg).

Для чего нужно определение рН почвы? Как мы уже упоминали, для оценки полноценности усвоения растениями важных макро- и микроэлементов, для выбора необходимых удобрений и для выяснения, нужно ли менять кислотность почвы на участке. Какие-то растения любят более кислые почвы, какие-то – более щелочные, это обязательно нужно учитывать и при необходимости самостоятельно корректировать рН грунта.

Еще один способ измерить уровень рН жидкости (воды для полива, раствора удобрений и т.п.) – использование так называемых чувствительных лакмусовых бумажек, к которым прилагаются цветные шкалы кислотности. Бумажку на секунду-другую опускают в измеряемый раствор, а затем сравнивают ее изменившийся цвет с эталонной шкалой.

 

Что такое ЕС (PPM)

 

Что такое рн и ес? просто о сложном полезно ()

С кислотностью разобрались, теперь узнаем подробнее о солености субстрата (раствора) или его уровне минерализации. Как понятно из названия, этот показатель рассказывает нам об общем количестве (концентрации) растворенных солей в измеряемой жидкости (TDS – Total Dissolved Solids).

Измеряется это общее солесодержание TDS в разных единицах – ЕС или PPM (это просто разные шкалы измерения одного и того же, как градусы Цельсия и градусы Фаренгейта для измерения температуры, к примеру). PPM – единица минерализации (количество частиц солей, растворенных в 1 миллионе частиц воды), ЕС – электропроводимость (измеряется в миллисименсах на см, мС/см, если вам действительно интересно). Используют ту шкалу, которая удобнее – существуют таблицы перевода одной в другую, где 70 PPM = 0,1 ЕС.

За рубежом существуют и другие системы перевода этих значений, с иными числами – не запутайтесь при пересчете!

Что это значит для растений? Показатели TDS крайне важны для растворов удобрений. Чем выше электропроводимость раствора, тем выше концентрация солей в нем и тем труднее растениям его впитывать.

Рекомендации по электропроводности раствора (мС/см) составляют для:

 

 

 

 

 

 

 

 

 

 

 

  • черенков – 0,2-0,4 ЕС;
  • молодых укоренившихся растений – 0,8-1,2 ЕС;
  • вегетирующих растений – 1,6-1,8 ЕС;
  • цветущих и плодоносящих растений – 1,8-2,2 ЕС.

 

 

Как измеряют EC (РРМ) растворов и воды для контроля уровня солей и минералов, анализа жесткости, электропроводности? Разумеется, ТDS-метром (иначе, кондуктометром), который также можно приобрести в специализированном садоводческом или хозяйственном магазине. Обычно качество воды в таких приборах для удобства пользователя измеряется и в значениях PPM, и в ЕС.

Как видите, страшные и непонятные физико-химические термины при ближайшем рассмотрении оказываются не такими уж ужасными, а вполне себе понятными и, главное, полезными для любого огородника. Помогите своим растениям действительно усвоить все питательные вещества, которые вы им предлагаете, и они не преминут ответить дружным урожаем.

Исходник: http://www.ogorod.ru/ru/main/useful/14421/Chto-takoye-pH-i-ES-Prosto-o-slozhnom.htm

 

pH и EC: Основы и важность контроля

 

Собранная воедино статья, в которой объясняется "Что такое pH?", "Что такое EC?". Также, речь зайдёт о важности контроля и оптимальном уровне pH. Делимся мнениями и задаём вопросы в комментариях.

pH – показатель кислотности раствора. Точнее говоря, показатель соотношения кислоты и щёлочи, где 1- кислота, 14 – щёлочь. Определяет способность растения усваивать питательные вещества из раствора.

Получается, что при выращивании на гидропонике, все растения обитают в слегка кислотной pH среде. Самый высокодопустимый порог ph для выращивания с запасом – 6,8. Но в замкнутых системах лучше придерживаться ph ниже 6,5 (иначе возникнет недостаток Марганца).

Потенциальный водород/ Potential Hydrogen / сила водорода/ pH – всё это об одном и том же. Правильно всё же писать маленькую «p» и большую «H».

Что такое рн и ес? просто о сложном полезно ()

pH – это водородный показатель, характеризующий концентрацию свободных ионов водорода в воде.

Если упрощать понятие, то величина рН определяется количественным соотношением в воде ионов Н+ и ОН-. Например: чем больше в воде H+, тем вода кислотнее. Чем больше OH- (то есть меньше H+), тем более щелочная вода.

Важно: уровень pH склонен самостоятельно повышаться.

В идеально чистой дистиллированной воде эти ионы будут уравновешивать друг друга. В таких случаях вода нейтральна и рН = 7.

pH =7 называется НЕЙТРАЛЬНЫМ, менее 7 – это будет КИСЛОТНАЯ среда, более 7 – ЩЕЛОЧНАЯ.

При растворении в воде различных веществ этот баланс может быть нарушен, что и приводит к изменению уровня рН.

При повышении H+ повышается кислотность.

При повышении OH- повышается щёлочность.

ВАЖНО! Не пытайтесь держать ваш pH в строгой цифре. Допустим pH раствора = 6.0, и вы при малейшем изменении в сторону, калибруете обратно в 6.0. ДЕЛАТЬ ЭТО НЕПРАВИЛЬНО! Поддерживайте только крайние значения этого диапазона 5,5 – 6,5. Таким образом, ни одному элементу не отдаётся предпочтение. В этом промежутке растение будет само забирать необходимые ему элементы.

pH – один из важнейших рабочих показателей качества воды, во многом определяющих характер химических и биологических процессов, происходящих в воде.
В зависимости от величины pH может изменяться скорость протекания химических реакций, степень коррозионной агрессивности воды, токсичность загрязняющих веществ и т.д.

Важно: Растения не любят резких перемен в корневой зоне. В их естественной среде обитания такого не бывает.

Оптимальная требуемая величина рН варьируется для различных систем водоочистки в соответствии с составом воды, характером материалов, применяемых в системе распределения, а также в зависимости от применяемых методов водообработки. Обычно уровень рН находится в пределах, при которых он непосредственно не влияет на потребительские качества воды. Так, в речных водах pH обычно находится в пределах 6.5-8.5, в атмосферных осадках 4.6-6.1, в болотах 5.5-6.0, в морских водах 7.9-8.3.

Для гидропоники оптимальный диапазон pH 5,5-6,5. Стабильный pH – основной фактор в выращивании.

Известно, что при низком рН вода обладает высокой коррозионной активностью, а при высоких уровнях (рН>11) вода приобретает характерную мылкость, неприятный запах, способна вызывать раздражение глаз и кожи. Именно поэтому для питьевой и хозяйственно-бытовой воды оптимальным считается уровень рН в диапазоне от 6 до 9. Для растений – от 5.5 до 6.5.

ppm – eдиница измерения концентрации. Основной количественный показатель содержания удобрения в растворе.

Что такое рн и ес? просто о сложном полезно ()

«Три буквы: TDS и ppm»

Солёность раствора показывает общее количество растворенных в нем солей. Выражается в частях на миллион (ppm) или электропроводимостью (EC). Знаете как правильно и точно измерить содержание соли в жидкости? При помощи выпаривания и взвешивания сухого остатка. Так и поступают в научных лабораториях. Ну а мы с вами можем поступать иначе и интересней. С помощью непростых понятий и инструментов 🙂

TDS (Total Dissolved Solids) – это суммарный количественный показатель концентрации растворенных в воде веществ (солей) или же попросту «общее солесодержание».

Для разных растений требуется правильный уровень ЕС/TDS и своя программа питания на каждый период жизни растения (вегетативный рост, цветение, плодоношение)

За единицу уровня минерализации (TDS) приняты миллиграмм на литр (мг/л). Это означает вес растворённых веществ в граммах, растворённых в 1 литре воды.

Также уровень минерализации может выражаться в частицах на миллион частиц воды – сокращенно ppm (parts per million – частиц на миллион). Такую аббревиатуру можно встретить в зарубежных источниках.
Это означает количество частиц растворенных в 1 миллионе частиц воды.

КОНДУКТОМЕТРИЯ – (от англ. conductivity – электропроводность), электрохимический метод анализа, основанный на измерении электрической проводимости растворов – EC.
Применяют для определения концентрации растворенных в воде веществ.

Уровень электропроводности влияет на морфологию растения, и что не менее важно – на качество и количество конечного продукта.

Прибор для измерения электроповодности именуется кондуктометр. На большинстве кондуктометров есть показатели двух значений (EC и ppm).

Полезные факт: Чистая водица не проводит электричество. Вот эта самая идеально чистая водица обладает бесконечной электросопротивляемостью. Но, когда в нашу чистую водицу добавляют соли (а вы помните, что в любой добавке есть соль) начинает действовать электрический процесс, и электричество отныне может проходить сквозь нашу водицу. Соответственно: чем больше солей растворится в воде, тем больше электрический поток.

Но не все растворённые соли проводят электричество одинаково (не все ионы равны между собой). Это все простые разговоры. А вот как по-научному:

Удельная проводимость (или удельная электролитическая проводимость) – это способность вещества проводить электрический ток. Это величина, обратная удельному сопротивлению.

Электропроводимость обусловлена наличием ионов натрия, калия, кальция, сульфата (SO4,2-) и гидрокарбоната. Наличие же таких ионов как двух- и трехвалентного железа, марганца, алюминия, нитрата, и т.п. не оказывает сколько-нибудь серьезного влияния на электропроводность (если, конечно же, эти ионы не содержатся в воде в значительном количестве).

Важно: Чем выше проводимость, тем выше концентрация солей, тем труднее растениям впитывать воду.

Вспомним школу: Основная единица измерения сопротивления – Ом. А удельная проводимость – величина обратная сопротивлению. Она измеряется в Сименсах (помните, раньше делали неплохие одноименные телефоны?).

Что такое рн и ес? просто о сложном полезно ()

Единицей данного типа измерений является Сименс/см. При измерении проводимости воды чаще используются более точные мкС/см (микросименс на см) и мС/см (миллисименс на см).

Рекомендации от GHE по электропроводности раствора (мС/см)

Черенки: 0.2 – 0.4

Молодые укоренившиеся растения: 0,8-1,2

Вегетация: 1.6 – 1.8

Цветение и плодоношение: 1.8 – 2,2

Согласно требованиям Управления по охране окружающей среды (EPA) максимально допустимый уровень загрязнения воды является 500 мг/литр или 500 частиц на миллион (parts per million, ppm) к общему количеству растворенных в воде твердых частиц.

Исходник: http://dzagi.co/articles/_/growers/hydroponic/osnovi-ph-and-ec

 

Что такое рН и ЕС? Просто о сложном

 

Для правильного развития растений необходимо использовать растворы с оптимальным набором макро- и микроэлементов. Но, как контролировать содержание питательных веществ в растворе?

TDS – общее содержание растворенных твердых веществ, является мерой комбинированного содержания всех неорганических и органических веществ, содержащихся в жидкости.

Для измерения концентрации растворенных твердых веществ в растворе используется TDS-метр (солемер).

TDS-метр обычно отображает концентрацию в частях на миллион (ppm или мг/л).

Единственный точный метод измерения TDS – это, испарить воду и взвесить сухой остаток. Это тяжело и трудоемко, поэтому, в качестве дешевого метода, используют приборы для измерения TDS, которые оценивают уровень TDS путем измерения ЕС воды.

Каждый TDS-метр является по сути ЕС-метром. TDS-метр измеряет ЕС и затем пересчитывает в TDS, используя внутренний поправочный коэффициент. TDS-метры разных производителей могут иметь разный коэффициент пересчета.

EC – электрический измеритель проводимости. Он широко используется в гидропонике, аквакультуре для мониторинга количества солей или примесей в растворе.

Что такое рн и ес? просто о сложном полезно ()

Электропроводность – это способность раствора проводить электрический ток. EC измеряется в µS/cm (мкСм/см или микросименс на сантиметр) или mS/cm (мСм/см – миллисименс на см). Формула пересчета: 1 mS/cm = µS/cm : 1000.

Для измерения электропроводимости используется ЕС-метр (кондуктометр).

Коммерческие производители отдают предпочтение кондуктометрам (ЕС-метрам), потому что они дают более точную оценку концентрации питательного раствора, в то время как измерение TDS является “грубой” оценкой.

 

Конвертер перевода PPM в EC.

 

Используется коэффициент перевода 0,7.

 

EC в питательном растворе

 

Проводимость раствора сильно зависит от температуры. Поэтому, важно измерять EC при той температуре, при которой метр калибровался. Но, сейчас продаются кондуктометры со встроенным сенсором для автоматической компенсации температуры.

Так же, ЕС всегда должна измеряться при постоянном рН. Измеряя ЕС при рН 5 и при рН 7, получите совершенно разные значения, так как ионы, которые определяют рН, имеют очень большое влияние на показатель ЕС.

 

Так зачем же нам нужно измерять EC?

 

Измерять EC нам необходимо, чтобы контролировать общее содержание питательных веществ в растворе. Электрическая проводимость может показать вам, что раствор потерял свою питательную ценность или что уменьшилось количество воды из-за испарения, при условии, что pH остался неизменным.

Если значение ЕС увеличилось, для снижения концентрации солей, можно добавить воду.

Если значение ЕС сильно снизилось (более чем на 30% от первоначального значения), значит ваш раствор существенно изменился по составу и его нужно заменить на новый. Нельзя добавлять питательные элементы, потому что вы не знаете, какие питательные вещества растение использовало, а какие нет. Конечно, вы всегда можете сделать дорогой химический анализ, но самый дешевый и простой способ – приготовить новый раствор.

Если, все таки, решитесь добавить на свой страх и риск элементы для повышения EC, то имейте ввиду, что с наибольшей вероятностью вызывают изменения EC в растворе – N и K. При пополнении раствора никогда нельзя добавлять микроэлементы и фосфор.

 

EC в прикорневой зоне

 

Другим фактором, который необходимо учитывать, это сколько питательных элементов находится в корневой зоне, количество которых будет изменяться в зависимости от характеристик среды, состава питательного раствора и частоты рециркуляции. Раствор в корневой зоне всегда будет иметь другой баланс питательных веществ и, как правило, другую ЕС и рН. Для определения EC в корневой зоне, нужно взять раствор, который вытекает из субстрата. Если EC высокое, то субстрат выщелачивают водой, чтобы удалить накопленные соли.

Закрытые системы (с рециркуляцией раствора).

Открытые системы (без рециркуляции).

В таких системах (например, капельный полив) необходимо контролировать EC не исходного раствора, а стекающего. Так же, как и в предыдущих системах, EC со временем увеличивается. Для снижения концентрации вы можете снизить ЕС подаваемого раствора, и/или увеличить количество протекающего раствора за счет увеличения объема и/или частоты полива.

 

Осадок на субстрате

 

 

Необходимая концентрация раствора

 

Что такое рн и ес? просто о сложном полезно ()

Растения, как правило, делятся на три группы, требующие высокой, средней и низкой EC.

Зелень, салат, бобы и большинство трав требуют низкую EC – от 0,7 до 1,5 мСм/см (mS/cm) зимой и от 1,5 до 1,8 мСм/см (mS/cm) летом.

Огурцы, дыни, многие декоративные растения и некоторые виды капусты предпочитают среднюю EC – около 1,6-1,8 мСм/см (mS/cm) летом и 1,8-2,2 мСм/см (mS/cm) в зимний период.

Помидоры, перец и баклажаны предпочитают более высокую проводимость, порядка 2,5 – 3,6 мСм/см (mS/cm) летом и 3,6 до 5,0 мСм/см (mS/cm) в зимний период.

Исходник: http://gidroponika.by/tds-es/

 

Сайт о нанотехнологиях #1 в России

 

За последние годы альтернативная энергетика стала предметом пристального интереса и ожесточенных дискуссий. Под угрозой изменения климата и того факта, что средние мировые температуры продолжают расти с каждым годом, стремление найти формы энергии, которые позволят сократить зависимость от ископаемого топлива, угля и других загрязняющих окружающую среду процессов, естественным образом выросло.

В то время как большинство концепций альтернативной энергетики не новы, только за последние несколько десятилетий этот вопрос стал, наконец, актуальным. Благодаря усовершенствованию технологий и производства, стоимость большинства форм альтернативной энергии понижалась, в то время как эффективность росла. Что же такое альтернативная энергетика, если говорить простыми и понятными словами, и какова вероятность того, что она станет основной?

Очевидно, остаются некоторые споры касательно того, что означает «альтернативная энергия» и к чему эту фразу можно применить. С одной стороны, этот термин можно отнести к формам энергии, которые не приводят к увеличению углеродного следа человечества. Поэтому он может включать ядерные объекты, гидроэлектростанции и даже природный газ и «чистый уголь».

С другой стороны, этот термин также используется для обозначения того, что в настоящее время считается нетрадиционными методами энергетики — энергии солнца, ветра, геотермальной энергии, биомассы и других недавних дополнений. Такого рода классификация исключает такие методы добычи энергии, как гидроэлектростанции, которые существуют больше сотни лет и представляют собой довольно распространенное явление в некоторых регионах мира.

Другой фактор в том, что альтернативные источники энергии должны быть «чистыми», не производить вредных загрязняющих веществ. Как уже отмечалось, это подразумевает чаще всего двуокись углерода, однако может относиться и к другим выбросам — моноксиду углерода, двуокиси серы, окиси азота и другим. По этим параметрам ядерная энергия не считается альтернативным источником энергии, поскольку производит радиоактивные отходы, которые высоко токсичны и должны храниться соответствующим образом.

Во всех случаях, однако, этот термин используется для обозначения видов энергии, которые придут на смену ископаемому топливу и углю в качестве преобладающей формы производства энергии в ближайшее десятилетие.

 

Виды альтернативных источников энергии

 

Строго говоря, существует много видов альтернативной энергии. Опять же, здесь определения заходят в тупик, потому что в прошлом «альтернативной энергетикой» называли методы, использование которых не считали основным или разумным. Но если взять определение в широком смысле, в него войдут некоторые или все эти пункты:

Гидроэлектроэнергия. Это энергия, вырабатываемая гидроэлектрическими плотинами, когда падающая и текущая вода (в реках, каналах, водопадах) проходит через устройство, вращающее турбины и вырабатывающее электричество.

Ядерная энергия. Энергия, которая производится в процессе реакций замедленного деления. Урановые стержни или другие радиоактивные элементы нагревают воду, превращая ее в пар, а пар крутит турбины, вырабатывая электричество.

Солнечная энергия. Энергия, которая получается напрямую от Солнца; фотовольтаические ячейки (обычно состоящие из кремниевой подложки, выстроенные в крупные массивы) преобразуют лучи солнца напрямую в электрическую энергию. В некоторых случаях и тепло, производимое солнечным светом, используется для производства электричества, это известно как солнечная тепловая энергия.

Что такое рн и ес? просто о сложном полезно ()

Энергия ветра. Энергия, вырабатываемая потоком воздуха; гигантские ветряные турбины вертятся под действием ветра и вырабатывают электричество.

Геотермальная энергия. Эту энергию вырабатывает тепло и пар, производимые геологической активностью в земной коре. В большинстве случаев в грунт над геологически активными зонами помещаются трубы, пропускающие пар через турбины, таким образом вырабатывая электричество.

Энергия приливов. Приливное течение у береговых линий тоже может использоваться для выработки электричества. Ежедневное изменение приливов и отливов заставляет воду протекать через турбины назад и вперед. Вырабатывается электроэнергия, которая передается на береговые электростанции.

Биомасса. Это относится к топливу, которое получают из растений и биологических источников — этанола, глюкозы, водорослей, грибов, бактерий. Они могли бы заменить бензин в качестве источника топлива.

Водород. Энергия, получаемая из процессов, включающих газообразный водород. Сюда входят каталитические преобразователи, при которых молекулы воды разбиваются на части и воссоединяются в процессе электролиза; водородные топливные элементы, в которых газ используется для питания двигателя внутреннего сгорания или для вращения турбины с подогревом; или ядерный синтез, при котором атомы водорода сливаются в контролируемых условиях, высвобождая невероятное количество энергии.

 

Альтернативные и возобновляемые источники энергии

 

Во многих случаях альтернативные источники энергии также являются возобновляемыми. Тем не менее эти термины не полностью взаимозаменяемы, поскольку многие формы альтернативных источников энергии полагаются на ограниченный ресурс. К примеру, ядерная энергетика опирается на уран или другие тяжелые элементы, которые необходимо сперва добыть.

В то же время ветер, солнечная, приливная, геотермальная и гидроэлектроэнергия полагаются на источники, которые полностью возобновляемые. Лучи солнца — самый изобильный источник энергии из всех и, хоть и ограниченный погодой и временем суток, является неисчерпаемым с промышленной точки зрения. Ветер тоже никуда не девается, благодаря изменениям давления в нашей атмосфере и вращению Земли.

В настоящее время альтернативная энергетика все еще переживает свою юность. Но эта картина быстро меняется под влиянием процессов политического давления, всемирных экологических катастроф (засух, голода, наводнений) и улучшений в технологиях возобновляемых энергий.

Например, по состоянию на 2015 год, энергетические потребности мира по-прежнему преимущественно обеспечивались углем (41,3%) и природным газом (21,7%). Гидроэлектростанции и атомная энергетика составили 16,3% и 10,6% соответственно, в то время как «возобновляемые источники энергии» (энергии солнца, ветра, биомассы и пр.) — всего 5,7%.

Это сильно изменилось с 2013 года, когда мировое потребление нефти, угля и природного газа составило 31,1%, 28,9% и 21,4% соответственно. Ядерная и гидроэлектроэнергия составляли 4,8% и 2,45%, а возобновляемые источники — всего 1,2%.

Кроме того, наблюдалось увеличение числа международных соглашений относительно обуздания использования ископаемого топлива и развития альтернативных источников энергии. Например, Директиву о возобновляемой энергии, подписанную Евросоюзом в 2009 году, которая установила цели по использованию возобновляемой энергии для всех стран-участниц к 2020 году.

По своей сути, из этого соглашения следует, что ЕС будет удовлетворять не менее 20% общего объема своих потребностей в энергии возобновляемой энергией к 2020 году и по меньшей мере 10% транспортного топлива. В ноябре 2016 года Европейская комиссия пересмотрела эти цели и установила уже 27% минимального потребления возобновляемой энергии к 2030 году.

Некоторые страны стали лидерами в области развития альтернативной энергетики. Например, в Дании энергия ветра обеспечивает до 140% потребностей страны в электроэнергии; излишки поставляются в соседние страны, Германию и Швецию.

Исландия, благодаря своему расположению в Северной Атлантике и ее активным вулканам, достигла 100% зависимости от возобновляемых источников энергии уже в 2012 году за счет сочетания гидроэнергетики и геотермальной энергии. В 2016 году Германия приняла политику поэтапного отказа от зависимости от нефти и ядерной энергетики.

Долгосрочные перспективы альтернативной энергетики являются чрезвычайно позитивными. Согласно отчету 2014 году Международного энергетического агентства (МЭА), на фотовольтаическую солнечную энергию и солнечную тепловую энергию будет приходиться 27% мирового спроса к 2050 году, что сделает ее крупнейшим источником энергии. Возможно, благодаря достижениям в области синтеза, ископаемые источники топлива будут безнадежно устаревшими уже к 2050 году.

Исходник: http://www.nanonewsnet.ru/news/2017/prosto-o-slozhnom-chto-takoe-alternativnaya-energetika

Поделиться:
Нет комментариев

Добавить комментарий

Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.